Journal of Organometallic Chemistry, 412 (1991) 127–136 Elsevier Sequoia S.A., Lausanne JOM 21733

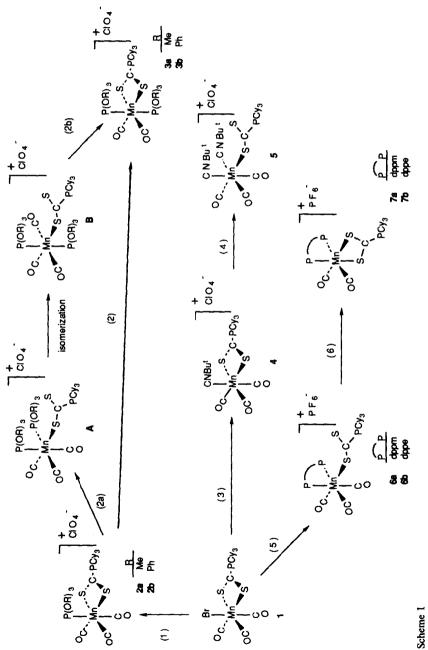
Ring opening and closing in $(CO)_n(L)Mn^I$ complexes where $L = S_2CPCy_3$ or diphosphine. Novel complexes containing the Mn(μ -L)AuC₆F₅ entity where $L = S_2CPCy_3$ or dppm

Daniel Miguel, Victor Riera *

Departamento de Química Organometálica, Universidad de Oviedo, E-33071 Oviedo (Spain)

and Jesús A. Miguel

Departamento de Química Inorgánica, Universidad de Valladolid, E-47005 Valladolid (Spain) (Received December 28th, 1990)


Abstract

The four-membered Mn-S-C-S ring in complexes containing S₂CPCy₃ chelate ligands are opened very easily when the complexes are treated with phosphites, isocyanides or diphosphines, to give complexes in which the S₂CPCy₃ entity is monodentate. In some cases, the resulting <u>complexes</u> undergo intramolecular displacement of CO by the uncoordinated sulfur with closing of the Mn-S-C-S ring. The uncoordinated sulfur in cationic complexes in which S₂CPCy₃ is monodentate, appears to be a poor nucleophile, and fails to bind a second metal to give four-electron bridges. Treatment of fac-[Mn(CO)₃(dppm){SC(S)PCy₃}]PF₆ with [(tht)AuC₆F₅], causes opening of the chelate ring of the diphosphine dppm, and simultaneous closing of the ring of the S₂CPCy₃ ligand to give [(S₂CPCy₃)(CO)₃Mn(μ dppm)Au(C₆F₅)]PF₆. However, the complex [(η^5 -C₅H₄-Me)(CO)₂MnSC(PCy₃)SAu(C₆F₅)], containing the first example of a η^1 (S), η^1 (S'), S₂CPCy₃ four-electron bridge between two different metals, can be prepared from [Mn(η^5 -C₅H₄Me)(CO)₂(SC(S)PCy₃)] and [Au(C₆F₅)(tht)].

Introduction

Interest in the chemistry of complexes containing trialkylphosphoniodithiocarboxylato ligands, S_2CPR_3 , has led to the preparation of many compounds in which the S_2CPR_3 groups exhibit a wide variety of modes of coordination, usually as monodentate or chelate ligands [1]. However, there have been only a few studies of their reactivity, and these have been centered mainly on the attack of strong nucleophiles (such as H⁻, R⁻, RO⁻, and RS⁻) on the central carbon of the S_2CPR_3 ligands [2]. We have recently reported the preparation of a number of compounds containing S_2CPCy_3 groups bonded to manganese as unidentate and chelate ligands [1c,3], and we present here some additional observations that illustrate the ability of the chelate S_2CPCy_3 to undergo ring opening in the presence of other ligands such as phosphites, $CN^{+}Bu$, and diphosphines. We have also examined the ability of the

0022-328X/91/\$03.50 © 1991 – Elsevier Sequoia S.A.

uncoordinated sulfur in manganese(I) complexes containing unidentate S_2CPCy_3 to coordinate a second metal atom.

Results and discussion

Reaction of $fac-[Mn(CO)_3{P(OR)_3}(S_2CPCy_3)]ClO_4$ (2) with a molar equivalent of phosphite (reaction 2 in Scheme 1) either under UV irradiation or upon heating in the presence of Me₁NO leads to the substitution of the carbonyl group in *cis* to both sulfur atoms of the chelate S_2CPCy_3 ligand to give the cis-dicarbonyl transbis(phosphite) complexes $[Mn(CO)_2 \{P(OR)_3\}_2(S_2CPCy_3)]ClO_4$ (R = Me (3a), Ph (3b)). Analytical and spectroscopic (see Tables 1 and 2) data fully support the formulation given for 3a in Scheme 1. The two v(CO) absorptions (at 1970s, and 1906s cm⁻¹) are characteristic of a *cis*-arrangement of the two carbonyl ligands, and the ${}^{31}P{}^{1}H$ shows only one signal (δ 175.4, br) for the two phosphites and a triplet $[\delta 25.3, {}^{4}J(PP) 15 \text{ Hz}]$ for the phosphorus on the S₂CPCy₃ ligand. In the {}^{13}C{}^{1}H} spectrum of 3a, the signal of the central carbon of the S₂CPCy₃ appears at δ 213.9 and is cleanly resolved into a doublet of triplets due to the coupling to the phosphorus of PCy₁¹J(PC) 36 Hz] and to two equivalent phosphite ligands [${}^{3}J$ (PC) 3 Hz]. Additionally, the two equivalent carbons of the carbonyl ligands appear as a broad triplet (δ 221.6) due to the coupling to the two phosphites [²J(PC) 26 Hz]. The $P(OPh)_3$ derivative **3b** has been identified in solution by spectroscopic methods but, in spite of repeated attempts we have not been able to obtain an analytically pure sample.

The new compound $fac-[Mn(CO)_3(S_2CPCy_3)(CN^tBu)]ClO_4$ (4) can be prepared from 1 by bromide abstraction with AgClO₄ and subsequent addition of CN¹Bu (reaction 3). Treatment of 4 with an additional equivalent of $CN^{t}Bu$ yields a product which can be unambiguously identified from its analytical and spectroscopic data as fac-[Mn(CO)₃{SC(S)PCy₃}(CN¹Bu)₂]ClO₄ (5). The IR spectrum of 5 in CH₂Cl₂ solution shows three ν (CO) bands (at 2049s, 1983s, and 1962s, cm⁻¹) attributable to a fac-arrangement of three carbonyl ligands, and two $\nu(CN)$ absorptions (2192m and 2177m cm⁻¹) from two mutually cis CN^tBu ligands. The ${}^{13}C{}^{1}H{}$ NMR spectrum of 5 shows only one set of signals from the two CN^tBu ligands and two signals from the carbonyl ligands (δ 216.0 and 211.9, approximate ratio 1/2), consistent with the effective symmetry C_s for the cation in 5. The presence of S_2CPCy_3 acting as a monodentate ligand is shown not only by the ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H{}$ NMR data (Tables 1 and 2) but also by the characteristic absorptions in the region 1000 to 1050 cm^{-1} in the solid state IR spectrum (KBr disc). In reaction 4 the entering CN¹Bu ligand displaces one of the sulphur atoms of the chelate S_2CPCy_3 instead of one carbonyl group as in reaction 2. Comparison between reactions 2 and 4 is not straightforward since reaction 2 is made under conditions which promote the loss of CO, whereas reaction 4 is thermally induced. Attempts to carry out reaction 4 under UV irradiation led to extensive decomposition. On the other hand, heating of the phosphite compound 2a with P(OMe)₃ in CHCl₃, without a decarbonylating agent, leads ultimately to the same cis-dicarbonyl transbis(phosphite) 3a, albeit in lower yield than that from reaction 2. IR-monitoring of the thermal reaction between 2a and P(OMe)₃ shows the appearance of ν (CO) bands (2045w, 1977s, and 1937m cm⁻¹) that are tentatively attributed to the formation of a mer-tricarbonyl, trans bis(phosphite) intermediate mer-trans-

Compound	$\nu(CO)^{a}(cm^{-1})$	³¹ $P{1, b}$	<u> </u>
		S ₂ C-P	other
cis, trans-[Mn(CO), [P(OMe),], (S, CPCy,)]ClO ₄ (3a)	1970s, 1906s	25.3 t (15)	175.4 br [2 P(OMe) ₁]
cis, trans-[Mn(CO), [P(OPh),], (S, CPCy,)]ClO, (3b)	1990s, 1927s	26.9 t (15)	159.7 br [2 P(OPh),]
fac-[Mn(CO),(CN'Bu)(S,CPCy,)]CIO ₄ (4)	2050s, 1996s, 1972s	31.8 s	
fac -[Mn(CO) ₃ (CN ⁴ Bu) ₂ {SC(S)PCy ₃ })ClO ₄ ^{-d} (5)	2049s, 1983s, 1962s	34.5 s	
fac-[Mn(CO),(dppm){SC(S)PCy ₃ }]PF ₆ (6a)	2025s, 1961s, 1944s	33.1 t (4)	17.1s, br
$fac-[Mn(CO)_3(dppe)[SC(S)PCy_3]]PF_6$ (6b)	2024s, 1960s, 1943s	32.4 t (4)	74.3s, br
cis-[Mn(CO), (dppm)(S,CPCy,)]PF ₆ (7a)	1957s, 1902s	22.1 t (2)	39.13 br. d., and 20.77 br. d.(60)
cis-[Mn(CO), (dppe)(S,CPCy,)]PF, (7b	1953s, 1895s	23.9 ((11)	79.9 d. of d. (26 and 11), and
			94.7 d. of d. (26 and 11)
[(CO) ₃ (S ₂ CPCy ₃))Mn(μ-dppm)Au(C ₆ F ₅)]PF ₆ ^{e,f} (8)	2042s, 1967s, 1937s	31.2 d (10)	29.2 m (Au- <i>P</i>) and
			47.3 br (Mn-P) (μ-dppm)
[Mn(\u03c0 - C, H_a-Me)(CO), {SC(S)PCy, }] (9)	1921s, 1870s	19.21s	
[(π ⁵ -C ₅ H ₅ -Me)(CO) ₂ Mn(μ-S ₂ CPCy ₃)Au(C ₆ F ₅)] ⁸ (10)	1953s, 1908s	35.9s	
^a CH ₂ Cl ₂ solution. ^b CDCl ₃ solution; $J(PP)$, (Hz) in parentheses. ^c $r(CN)$ at 2180m cm ⁻¹ , ^d $r(CN)$ at 2192m, and 2177m, cm ⁻¹ , ^{c³¹} P(¹ H) NMR spectra of commonds 6a-b , 7a-h, and R disnlaw the sional of the PE anion at ca. $\delta = -144$ mm [senter, $J(PF)$ 713 Hz], ^{f¹/19} F(¹ H) NMR (CDCl ₂ , δ (mm) from CCl ₂ F] for R .	rentheses. ^c ν (CN) at 2180m cl anion at ca. $\delta - 144$ mm [sen	m^{-1} , $\frac{d}{r}$ $r(CN)$ at 2192n tet. J(PF) 713 Hzl 1 19 1	1, and $2177m$, cm^{-1} . $^{31}P(^{1}H)$ NMR spectra of $s^{71}H1$ NMR (CDC1. δ (mm) from CC1.F1 for 8:

Table 1 Infrared and ${}^{31}P\{^{1}H\}$ NMR data for the new compounds

compounds **6a-b**, 7a-b, and **8** display the signal of the PF₆ anion at ca. $\delta - 144$ ppm [septet, J(PF) 713 Hz]. ^{1, Y}F(¹H) NMR [CDCl₃, δ (ppm) from CCl₃F] for **8**: -115.3 (m, F² and F⁶), -158.7 [t, J(FF) 20 Hz, F⁴], and -162.3 (m, F³ and F⁵). ⁸ ¹⁹F(¹H) NMR for **10**: -115.0 (m, F² and F⁶), -160.1 [t, J(FF) 20 Hz, F⁴], and -163.2 (m, F³ and F⁵).

Table 2

Com- pound	S ₂ C-P	S ₂ C-P(C ₆ H ₁₁) ₃	<i>C</i> 0	other ligands
3a	213.9 d of t (36 and 3)	30.8 d (38) C^1 26.7 d (12) C^1 and C^6 26.3 d (3) C^2 and C^5 25.4 s, C^4	221.6 t (26)	52.5 s, P(OCH ₃) ₃
5	220.4 d (41)	32.7 d (37) C^1 26.7 d (11) C^1 and C^6 26.5 d (3) C^2 and C^5 25.4 s, C^4	216.0 s (1CO) 211.9 s (2CO)	152.1 s, CNC(CH ₃) ₃ 58.9 s, CNC(CH ₃) ₃ 30.1 s, CNC(CH ₃) ₃
7 a	212.5 d of d (32 and 12)	30.3 d (38) C^1 26.6 d (12) C^1 and C^6 26.2 s C^2 and C^5 25.3 s, C^4	226.6 t (15) 220.9 d, br (22)	dppm: 135.1 d of d (38 and 9) 2 C^1 133.7 d of d (27 and 6) 2 C^1 132.8 to 128.4 m 4(C^2 to C^6) 43.9 t (21), PC P
8	227.4 d of d (30 and 8)	30.7 d (36) C^1 26.9 d (10) C^1 and C^6 26.8 s C^2 and C^5 25.6 s, C^4	219.6 d (18) 214.2 s, br	dppm: 135.6 to 128.5 m, 4 (C_6H_5) 43.9 t (21) PCP C_6F_5 : 150.4 to 137.6 m
9	202.4 d (51)	32.8 d (41) C^1 26.9 d (12) C^2 and C^6 26.8 d (3) C^3 and C^5 25.7 s, C^4	233.6 s	$C_5H_4CH_3$: 101.6 C^1 82.5, 82.4, C^2 to C^5 13.4, CH_3
10	180.8 d (54)	35.2 d (41) C^1 27.7 C^3 and C^5 27.0 d (10) C^2 and C^6 25.7 s C^4	231.2 s	$C_5H_4CH_3$: 103.6 C^1 85.0, 84.4, C^2 to C^5 13.4, CH_3 C_6F_5 : 150.1 to 126.0 m.

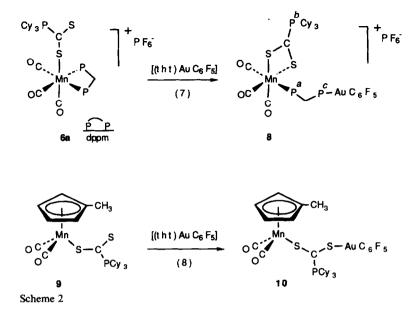
¹³C{¹H} NMR data ^a for the new compounds

^a CDCl₃ solution, δ , ppm, from SiMe₄. J(PC) (Hz) in parentheses.

 $[Mn(CO)_3(P(OMe)_3)_2\{SC(S)PCy_3\}]ClO_4$ (**B** in Scheme 1) resulting from the displacement (reaction 2a) of one sulfur in the starting compound 2a, to give the *fac*-tricarbonyl **A**, followed by a rapid *cis*-to-*trans* isomerization of the two phosphite ligands. The intermediate **B** seems to be unstable under the reaction conditions and some decomposition occurs along with the intramolecular displacement (reaction 2b) of CO to give the dicarbonyl 3a. Thus, reactions 2 and 4 proceed similarly when carried out under thermal conditions. The difference in the final products could arise from the fact that the intramolecular displacement of CO in the bis-isocyanide 5 is more difficult than in the *mer*-tricarbonyl bisphosphite **B** owing to the better donating properties of the isocyanide ligands and also because the two CO ligands *cis* to the sulphur in **B** are mutually *trans*, and therefore labilized.

Ring-opening seems to be a common feature in the reactivity of manganese complexes containing S_2CPCy_3 chelates. Thus, when a mixture of fac-[Mn(CO)₃-(S_2CPCy_3)Br] (1), bis(diphenylphosphino)methane (dppm), KPF₆ and CH₂Cl₂ is stirred at room temperature for 6 h, fac-[Mn(CO)₃(dppm){SC(S)PCy₃}]PF₆ (**6a**) containing monodentate S_2CPCy_3 is formed. The spectroscopic data for the cation in **6a** are identical to those for the derivative we previously obtained (as the ClO₄⁻ salt) by displacement of the perchlorato ligand in fac-[Mn(CO)₃(dppm)(OClO₃)]

[3]. When reaction is carried out with 1,2-bis(diphenylphosphino)ethane (dppe) instead of dppm, the analogous fac-[Mn(CO)₃(dppe){SC(S)PCy₃}]PF₆ (**6b**) is produced in 3 h. The higher rate of the reaction with dppe probably reflects the better chelating properties of the dppe ligand (to give a 5-membered ring) compared with those of dppm (which gives 4-membered rings).


The facile displacement of the bromide ligand from compound 1 by the phosphorus atom of the diphosphines is somewhat unexpected when viewed in the light of the behaviour of other halogeno-carbonyl complexes of manganese(I). It is well known that metal-halide bonds become labilized as the electron density in the metallic fragment increases as a result of progressive replacement of CO groups by less π -acceptor ligands. In the manganese(I) compounds [Mn(CO)₃(L)₂Br] the presence of an efficient halide abstractor such as a silver(I) salt is usually needed to promote the substitution of the halide by a two-electron ligand to give cationic complexes [4]. As far as we know, the direct displacement of halide is possible only in highly-substituted compounds such as [Mn(CO)(L-L)₂Br] [5]. It is therefore remarkable that reaction 5 can be carried out even in the absence of KPF₆, to give compounds 6a-b as unstable bromide salts which can be stabilized by anion exchange with KPF₆ after the substitution of bromide has been completed. This seems to be fairly general, and we have obtained compounds 2 and 4 as hexafluorophosphate salts by stirring 1 with the appropriate ligand $(P(OR)_3)$ for 2a-b, CN^tBu for 4) and KPF₆ in CH₂Cl₂ at room temperature.

The uncoordinated sulphur in complexes 6 can react further and close the chelate ring by intramolecular substitution of CO under appropriate conditions. Thus, UV irradiation of 6a or 6b in CH_2Cl_2 gives the purple *cis*-[Mn(CO)₂(P-P){S₂CPCy₃}]PF₆ (P-P = dppm (7a), dppe (7b)), whose identity have been established from analytical and spectroscopic data (Tables 1 and 2).

The presence of a monodentate S_2CPCy_3 ligand in compounds such as 5, 6a-b, and in others we prepared previously [3], led us to examine the possibility of using the non-coordinated sulfur atom to bind a second metal-ligand fragment and produce homo- or hetero-dinuclear complexes in which the S_2CPCy_3 group acts as a four-electron bridging ligand. Several attempts to obtain homo-dinuclear manganese complexes in this way were unsuccessful: it seems that the nucleophilic character of the non-coordinated sulfur in *fac*-[Mn(CO)₃(L-L){SC(S)PCy₃}]ClO₄ (where L-L = 2,2'-bipyridine (bipy), dppm, or dppe) [3] is not strong enough to displace the weakly coordinated perchlorato ligand in *fac*-[Mn(CO)₃(L-L)(OClO₃)] to give the desired dinuclear complexes.

On the other hand, the reaction of the same Mn complexes with $[AuCl(PPh_3)]/TIPF_6$ gave the neutral $fac-[Mn(CO)_3(L-L)(OClO_3)]$ together with Au^1 species containing the S₂CPCy₃ adducts. This ligand transfer can be regarded as a consequence of the strong demand of electron density in the cationic MPPh₃⁺ fragment, and therefore use of electron-richer fragments, such as the neutral $Au(C_6F_5)$, would be better for giving the desired manganese-gold complexes.

However, when an orange CH_2Cl_2 solution of $fac-[Mn(CO)_3(dppm){SC(S)-PCy_3}]PF_6$ (6a) was treated with a molar-equivalent of $[Au(tht)(C_6F_5)]$ (tht = tetrahydrothiophene), the colour changed to purple-red and the dinuclear compound $[(S_2CPCy_3)(CO)_3Mn(\mu-dppm)Au(C_6F_5)]PF_6$ (8, Scheme 2) could be isolated. The IR spectrum of 8 consist of three bands with a pattern corresponding to a *fac*-tricarbonyl grouping. The ³¹P{¹H} NMR spectrum is highly informative: it

shows three signals; the broad one at higher frequency (47.3 ppm) is attributable to a phosphorus bonded to manganese (P^a in scheme 2) the sharp doublet at 31.2 ppm can be assigned to the phosphorus of the S₂CPCy₃ ligand (P^b) which is coupled to the P^a atom of the diphosphine (${}^{4}J(P^{b}-P^{a})$) 10 Hz), and the third signal, a complex multiplet centered at 29.1 ppm, comes from the remaining P atom of the dppm ligand (P^c) which is bonded to the gold atom and so is coupled to P^a and to the fluorine atoms on the $C_6 F_5$ group. The coordination of P^a to manganese accounts for the broadening of the corresponding signal, and this precludes observation of of the expected multiplet due to the coupling with P^{b} and P^{c} . In addition, the ${}^{13}C{}^{1}H{}$ NMR spectrum of 8 exhibits the signal corresponding to the central carbon of the S_2CPCy_3 ligand as a doublet of doublets owing the coupling to the P^b atom of PCy₃ (¹J(PC) 30 Hz) and to P^a of the dppm ligand (³J(PC) 8 Hz). The formation of 8 implies the opening of the dppm chelate ring in the starting compound, promoted by the presence of the Au(C_6F_5) fragment, the final result of the reaction thus reflecting a balance between the chelating and bridging properties of the S_2CPCy_3 and dppm ligands. Two experimental observations indicate that the driving force of the reaction comes from the formation of the phosphorus-gold bond rather than the chelating ability of the S₂CPCy₃ ligand: (a) in reaction 5, discussed above, the chelate S_2CPCy_3 in compound 1 is opened very easily by the dppm ligand to give compound **6a**, thus demonstrating the better chelating properties of dppm compared with S₂CPCy₃, and (b) the non-coordinated sulfur atom on compounds fac- $[Mn(CO)_3(L_2){SC(S)PCy_3}]ClO_4$ (L₂ = bipy, dppe, S₂CPCy₃, 2CN^tBu) fails to displace the weakly coordinated tht ligand in $[Au(C_6F_5)(tht)]$, which reveals the poor nucleophilicity of the uncoordinated sulfur atom in these cationic complexes.

It was thus expected, that the use of compounds containing the monodentate $SC(S)PCy_3$ ligand bonded to an electron-richer fragment would somewhat enhance the nucleophilicity of the non-coordinated S-atom. Thus, the neutral complex

134

[Mn(η^5 -C₅H₄Me)(CO)₂(SC(S)PCy₃)] (9) was prepared by a method similar to that used for its analogue [Mn(η^5 -C₅H₅)(CO)₂(SC(S)PEt₃)] [6]. Treatment of 9 with [Au(C₆F₅)(tht)] in CH₂Cl₂ produces [(η^5 -C₅H₄Me)(CO)₂MnSC(PCy₃)SAu(C₆F₅)] (10). Analytical and spectroscopic data support the structure depicted for 10 in Scheme 2: the ν (CO) maxima in the IR spectrum of 10 appear at 1955 and 1910 cm⁻¹, shifted to higher frequencies from those of the parent compound 9 (at 1922 and 1869 cm⁻¹), and the ³¹P{¹H} NMR spectrum of 10 shows a single peak at δ 35.9 ppm, shifted to higher frequencies when compared to the signal from compound 9 (at δ 19.2). The presence of the Au(C₆F₅) fragment in 10 is confirmed by its ¹⁹F{¹H} NMR spectrum. In addition the ¹³C{¹H} NMR spectrum of 10 shows the expected doublet for the central carbon of S₂CPCy₃ at δ 180.8 (¹J(PC) 54 Hz), shifted towards lower frequencies compared with that for the parent compound 9 [δ 202.4 d, ¹J(PC) 51 Hz].

There have been reported a few examples of compounds containing trialkylphosphoniodithiocarboxylato ligands acting as a $\eta^1(S)$, $\eta^1(S')$, four-electron bridges but, as far as we know, all of them are homo-dinuclear complexes of gold [7], silver [8], or molybdenum [9]. Compound **10** thus contains the first example of an S₂CPR₃ group acting as a 4e bridge between two different metals. Unfortunately, despite repeated attempts under different conditions, we could not obtain crystals of **10** suitable for an X-ray analysis.

Experimental

All reactions were carried out in dry solvents under nitrogen. Ligands and other reagents were purchased and used without purification unless otherwise stated. Infrared spectra were recorded on a Perkin-Elmer 298 spectrometer. ¹H and ¹³C{¹H} NMR spectra (CDCl₃, δ (ppm) to higher frequencies from internal TMS), and ³¹P{¹H} NMR spectra (CDCl₃ solution, δ (ppm) to higher frequencies from external 85% H₃PO₄), were recorded on a Bruker AC-300. ¹⁹P{¹H} NMR spectra [CH₂Cl₂ solution, lock on external D₂O, δ (ppm) positive to higher frequencies from internal CFCl₃] were recorded on a Varian FT80-A instrument. Elemental analysis were carried out on a Perkin-Elmer 240-B analyzer.

cis-trans- $[Mn(CO)_2 \{P(OMe)_3\}_2 (S_2 CPCy_3)] ClO_4$ (3a)

(a) A mixture of $fac-[Mn(CO)_3{P(OMe)_3}(S_2CPCy_3)]ClO_4$ (2a) [3] (0.214 g; 0.26 mmol), P(OMe)_3 (0.04 ml, ca. 0.34 mmol) and Me_3NO (0.022 g, 0.29 mmol) in CHCl₃ (25 ml) was heated under reflux for 30 min and then filtered. The solvent was evaporated *in vacuo* to give an oil, which was washed with hexane (3 × 15 ml) to afford a purple solid. Recrystallization was from CH₂Cl₂/hexane. Yield 0.193 g, 80%.

(b) A solution containing 2a (0.1 g; 0.14 mmol) and P(OMe)₃ (0.08 ml, ca. 0.7 mmol) in CH₂Cl₂ (20 ml) was irradiated with UV light for 1.5 h. Work-up was as described for method a. Yield 0.061 g, 53%. Analysis. Found: C, 39.68; H, 6.38. $C_{27}H_{51}CIMnO_{12}P_3S_2$ calc: C, 39.78; H, 6.31%.

Similar reaction between $fac-[Mn(CO)_3{P(OPh)_3}(S_2CPCy_3)]ClO_4$ (2b) and P(OPh)₃ afforded *cis-trans-*[Mn(CO)_2{P(OPh)_3}_2(S_2CPCy_3)]ClO_4 (3b) which was identified spectroscopically. However, despite several attempts, we could not obtain a pure sample of 3b.

$fac-[Mn(CO)_3(CN'Bu)(S_2CPCy_3)]ClO_4$ (4)

A mixture of 1 [3] (0.5 g, 0.87 mmol) and AgClO₄ (0.215, 1.04 mmol) in CH₂Cl₂ (50 ml) was stirred in darkness at room temperature for 1.5 h to give a purple solution of *fac*-[Mn(CO)₃(S₂CPCy₃)(OClO₃)][ν (CO) bands at 2030s, 1950s, and 1935s, cm⁻¹]. The mixture was filtered under nitrogen to remove the AgBr and to the solution was added CN¹Bu (0.072 g, 0.87 mmol). After 1 h stirring the solvent was evaporated *in vacuo* and the oily residue washed with Et₂O (3 × 15 ml). Recrystallization from CH₂Cl₂/Et₂O at 0°C gave red-brown crystals of 4 (0.53 g, 90%). Analysis. Found: C, 47.69; H, 6.37; N, 1.93. C₂₇H₄₂ClMnNO₇PS₂ calc: C, 47.82; H, 6.24; N, 2.07%.

$fac-[Mn(CO)_3(CN'Bu)_2\{SC(S)PCy_3\}]ClO_4 (5)$

A mixture of fac-[Mn(CO)₃(CN^tBu)(S₂CPCy₃)]ClO₄ (4) (0.4 g, 0.59 mmol) and CN^tBu (0.07 ml, 0.62 mmol) in CHCl₃ (20 ml) was heated under reflux for 2 h. The colour of the solution changed from red to yellow. After filtration, the solvent was evaporated *in vacuo*, and the residue washed with hexane (3 × 20 ml) to give a yellow solid. Recrystallization was from CH₂Cl₂/hexane. Yield 0.35 g, 78%. Analysis. Found: C, 50.958; H, 6.90; N, 3.57. C₃₂H₅₁ClMnN₂O₇PS₂ calc: C, 50.48; H, 6.75; N, 3.68%.

$fac-[Mn(CO)_3(dppm){SC(S)PCy_3}]PF_6$ (6a)

A mixture of fac-[Mn(CO)₃(S₂CPCy₃)Br] (1) (0.2 g, 0.347 mmol), dppm (0.113 g, 0.347 mmol) and KPF₆ (0.128 g, 0.694 mmol) in CH₂Cl₂ (15 ml) was stirred in the dark for 6 h. The mixture was then filtered and the solution was concentrated *in vacuo* to ca. 10 ml. Addition of hexane (5 ml) and slow concentration *in vacuo* gave orange-yellow microcrystals of **6a**. Yield 0.267 g, 75%. Analysis. Found: C, 54.40; H, 5.41. C₄₇H₅₅F₆MnO₃P₄S₂ calc: C, 55.08; H, 5.41%.

$fac-[Mn(CO)_3(dppe){SC(S)PCy_3}]PF_6$ (6b)

The procedure was similar to that used for **6a**, starting from fac-[Mn(CO)₃(S₂CPCy₃)Br] (1) (0.2 g, 0.347 mmol), dppe (0.138 g, 0.347 mmol) and KPF₆ (0.128 g, 0.694 mmol). The reaction was complete in 3 h. Yield 0.281 g, 78%. Analysis. Found: C, 55.10; H, 5.46. C₄₈H₅₇F₆MnO₃P₄S₂ calc: C, 55.49; H, 5.53%.

cis-[Mn(CO)₂(dppm)(S₂CPCy₃)]PF₆ (7a)

A cooled solution (-10°C) of fac-[Mn(CO)₃(dppm){SC(S)PCy₃}]PF₆ (6a) (0.1 g, 0.098 mmol) in CH₂Cl₂ (15 ml) was irradiated with UV light for 1 h. The colour changed from yellow to deep purple. Evaporation of the solvent gave an oil, which was washed with Et₂O (3 × 15 ml). The solid residue was dissolved in CH₂Cl₂ (10 ml) and the solution was filtered. Addition of hexane (5 ml) and slow evaporation of the solvents *in vacuo* gave deep purple crystals of 7a. Yield 0.05 g, 52%. Analysis. Found: C, 56.20; H, 5.58. C₄₆H₅₅F₆MnO₂P₄S₂ calc: C, 55.42; H, 5.56%.

cis-[$Mn(CO)_2(dppe)(S_2CPCy_3)$]PF₆ (7b) was obtained as described for 7a, by irradiation of **6b** (0.1 g, 0.096 mmol) for 1 h at -10° C. Yield 0.055 g, 56%. Analysis. Found: C, 56.03; H, 5.73. C₄₇H₅₇F₆MnO₂P₄S₂ calc: C, 55.84; H, 5.68%.

$[(S_2CPCy_3)(CO)_3Mn(\mu-dppm)Au(C_6F_5)]PF_6$ (8)

The gold complex [(tht)Au(C₆H₅)] [10] (0.046 g, 0.1 mmol) was added to a stirred solution of fac-[Mn(CO)₃(dppm){SC(S)PCy₃}]PF₆ (0.1 g, 0.097 mmol) in CH₂Cl₂

(15 ml). The mixture was stirred for 30 min and the solvent was then evaporated *in vacuo*. The red residue was washed with diethyl ether $(2 \times 10 \text{ ml})$ and recrystallized from CH₂Cl₂/diethyl ether at 0 °C. Yield 0.11 g, 80%. Analysis. Found: C, 45.96; H, 4.05. C₅₃H₅₅AuF₁₁MnO₃P₄S₂ calc: C, 45.83; H, 3.99%.

 $[Mn(\eta^5-C_5H_4-Me)(CO)_2\{SC(S)PCy_3\}]$ (9) was prepared by the procedure previously described for the PEt₃ derivative [6]. A stirred solution of $[Mn(\eta^5-C_5H_4Me)(CO)_3]$ (0.5 g, 2.29 mol) in tetrahydrofuran (100 ml) was irradiated for 4 h with UV light (at -10° C, with a slow nitrogen purge) to form $[Mn(\eta^5-C_5H_4Me)(CO)_2(THF)]$. After this time, S₂CPCy₃ (0.817 g, 2.29 mmol) was added, and the solution turned to deep blue. The solvents were then evaporated *in vacuo* and the resulting oil was dissolved in CH₂Cl₂ and chromatographed in alumina (activity III, 6×3 cm column). Hexane eluted a first band consisting mainly of starting compound, and then a mixture of CH₂Cl₂/hexane (1/1) eluted the deep blue band of compound 9. Evaporation of the solvents *in vacuo* gave a blue solid, which was recrystallized from CH₂Cl₂/hexane. Yield: 0.65 g, 52%. Analysis. Found: C, 60.10; H, 7.13. C₂₇H₄₀AuMnO₂PS₂ calc: C, 59.33; H, 7.38%.

$[(\eta^{5}-C_{5}H_{4}-Me)(CO)_{2}MnSC(PCy_{3})SAu(C_{6}F_{5})]$ (10)

A mixture of $[Mn(\eta^5-C_5H_4-Me)(CO)_2\{SC(S)PCy_3\}]$ (9) (0.1 g, 0.183 mmol), [(tht)Au(C₆F₅)] (0.083 g, 0.183 mmol) CH₂Cl₂ (10 ml), and CS₂ (1 ml) was stirred for 30 min. The solvents were then evaporated *in vacuo* and the residue was washed with hexane (2 × 10 ml). Recrystallization from CH₂Cl₂/hexane gave dark blue crystals of 10. Yield: 0.13 g, 81%. Analysis. Found: C, 41.16; H, 4.24. $C_{33}H_{40}AuF_5MnO_2PS_2 \cdot CH_2Cl_2$ calc: C, 41.03; H, 4.25%.

Acknowledgement

We thank the Spanish Dirección General de Investigación Científica y Técnica for financial support (project no. PB88-0467).

References

- See (a) H. Werner, Coord. Chem. Rev., 43 (1982) 165; (b) C. Bianchini, A. Meli, P. Dapporto, A. Tofanari and P. Zanello, Inorg. Chem., 26 (1987) 3677; (c) D. Miguel, V. Riera, F. Diego, J.A. Miguel, C. Bois and Y. Jeannin, J. Chem. Soc., Dalton Trans., (1990) 2719 and references therein.
- 2 (a) C. Bianchini, P. Innocenti, A. Meli, A. Orlandini and G. Scapacci, J. Organomet. Chem., 233 (1982) 233; (b) C. Bianchini, C. Mealli, A. Meli and G. Scapacci, Organometallics, 2 (1983) 141; (c) C. Bianchini, C.A. Ghilardi, A. Meli and A. Orlandini, Inorg. Chem., 22 (1983) 2188; (d) D. Miguel, V. Riera, J.A. Miguel and X. Soláns, Angew. Chem., Int. Ed. Engl., 28 (1989) 1014; Angew. Chem., 101 (1989) 1078.
- 3 D. Miguel, V. Riera, J.A. Miguel, C. Bois, M. Philoche-Levisalles and Y. Jeannin, J. Chem. Soc., Dalton Trans., (1987) 947.
- 4 F. Bombin, G.A. Carriedo, J.A. Miguel and V. Riera, J. Chem. Soc., Dalton Trans., (1981) 2049 and references therein.
- 5 F.J. Garcia-Alonso, V. Riera and M.J. Misas, Transition Met. Chem., 10 (1985) 19.
- 6 C. Bianchini, C.A. Ghilardi, A. Meli, S. Midolini and A. Orlandini, Organometallics, 1 (1982) 778.
- 7 R. Usón, A. Laguna, M. Laguna, M.L. Castilla, P.G. Jones and C. Fittschen, J. Chem. Soc., Dalton Trans., (1987) 3017.
- 8 C. Bianchini, C.A. Ghilardi, A. Meli, A. Orlandini and G. Scapacci, J. Chem. Soc., Dalton Trans., (1983) 1969.
- 9 D.M. Baird, P.E. Fanwick and T. Barwick, Inorg. Chem., 24 (1985) 3753.
- 10 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 133 (1977) 471.